

ARPA'S GEOLOGICAL MONITORING NETWORK: THE USE OF GROUND BASED InSAR

Luca Dei Cas – Centro di Monitoraggio Geologico ARPA Lombardia

November 16 th, 2023 - Firenze 2003-2023 twenty years of GBInSAR natural hazard and landslide monitoring: worldwide examples and case studies | Luca Dei Cas 1

VAL POLA 1987

November 16 th , 2023 - Firenze

MONITORED AREAS

- Monitoring Landslide areas:
 45
- Early warning monitoring: 29
- Knowledge or control monitoring: 16

DIFFERENT KINDS OF INSTRUMENTATIONS

GEOTECHNICAL	- Sate	RADAR RFEROMETRY - Gr rellite radar	round Sar radar
<section-header></section-header>	<section-header><section-header><list-item><list-item><list-item><table-row><table-container></table-container></table-row></list-item></list-item></list-item></section-header></section-header>	POGRAPHIC - Total station - GPS	A Rain gauge - Rain gauge - Snow gauge - Thermometer - Barometer

2003-2023 twenty years of GBInSAR natural hazard and landslide monitoring: worldwide examples and case studies | Luca Dei Cas

DOUBLE (REDUNTANT) TRASMISSION

November 16 th , 2023 - Firenze

2003-2023 twenty years of GBInSAR natural hazard and landslide monitoring: worldwide examples and case studies | Luca Dei Cas

AREAS BEEN MONITORED BY GROUND SAR RADAR

THE 7 AREAS MONITORED, BY GROUND SAR RADAR, FOR EARLY WARNING

GROUND SAR RADAR: REDUNTANT TRASMISSION

November 16 th , 2023 - Firenze

2003-2023 twenty years of GBInSAR natural hazard and landslide monitoring: worldwide examples and case studies | Luca Dei Gas

AREAS MONITORED BY GROUND SAR RADAR FOR EARLY WARNING : REDUNTANT ENERGY POWER

November 16 th , 2023 - Firenze

2003-2023 twenty years of GBInSAR natural hazard and landslide monitoring: worldwide examples and case studies | Luca Dei Gas

ARPA'S GEOLOGICAL MONITORING NETWORK: THE USE OF GROUND BASED INSAR

GALLIVAGGIO LANDSLIDE: AREA LOCATION

November 16 th , 2023 - Firenze 2003-2023 twenty years of GBInSAR natural hazard and landslide monitoring: worldwide examples and case studies | Luca Dei Cas 11

WHAT WAS THE SITUATION DURING THE YEARS BEFORE THE COLLAPSE?

2008: rockfall embankment and flexible barriers

PROTECTION AGAINST LANDSLIDE

2011/2012: geological monitoring network

2017: GEOTECHNICAL MODEL

In 2017, a study called "Geotechnical model and discern thresholds of trigger for the Gallivaggio landslide" showed us different manifestations of rock mass failure.

The different colour lines represent the **area boundary where the landslide could arrive** with changeable probability (function of historical events printed on bibliography).

Most of the analysis showed that the infrastructure and cultural heritage (road and Sanctuary) are threatened (the rock mass failure could impact them)

During the Autumn 2017 the data analysis values acquired, enabled us to notify the Lombardy Region Civil Protection of a **dangerous acceleration** of movement in about 460 m² of the rock area (5-6000 mc).

	Agenzia Regionale per la Protezione dell'Ambiente Settore Tutela dal Rischi Naturali Centro Montoreggia Geologico
	MONITORAGGIO GEOLOGICO
	PARETE DEL GALLIVAGGIO
	NEL TERRITORIO COMUNALE DI
	SAN GIACOMO FILIPPO (SO)
	REPORT DI AGGIORNAMENTO
Redatto	Dott. Geol. Francesco Ferrarini Dicembre 2017
	REPORT DI AGGIORNAMENTO

In February 2018, we sent another notification in which we informed the Civil Protection about the acceleration showed a doubling of the values compare to the previous ones in Autumn.

ROCK BLOCK FAILURE: APRIL 13TH 2018

November 16 th , 2023 - Firenze 2003-2023 twenty years of GBInSAR natural hazard and landslide monitoring: worldwide examples and case studies | Luca Dei Cas 16

MAY 11TH 2018: PROTECTION OF CULTURAL HERITAGE

November 16 th, 2023 - Firenze 2003-2023 twenty years of GBInSAR natural hazard and landslide monitoring: worldwide examples and case studies | Luca Dei Cas 17

Situazione del dissesto

Facendo seguito a quanto precedentemente comunicato si osservano nelle ultime 24 ore velocità dei punti monitorati in ulteriore aumento, con valori che hanno raggiunto un massimo di 107.2 mm/24h, con velocita orarie fra le 15 e le 16 di oggi di circa 2 cm/h. Valori così elevati non erano finora stati osservati sull'ammasso. ed il trend di continua accelerazione indica una situazione di estrema pericolosità ormai prossima al collasso.

ARPA'S GEOLOGICAL MONITORING NETWORK: THE USE OF GROUND BASED INSAR

November 16 th , 2023 - Firenze 2003-2023 twenty years of GBInSAR natural hazard and landslide monitoring: worldwide examples and case studies | Luca Dei Cas 19

THE INFRASTRUCTURES AND CULTURAL HERITAGE AFTER THE COLLAPSE

BELL TOWER

November 16 th , 2023 - Firenze

THE INFRASTRUCTURES AND CULTURAL HERITAGE AFTER THE COLLAPSE THE CHURCH

November 16 th , 2023 - Firenze

2003-2023 twenty years of GBInSAR natural hazard and landslide monitoring: worldwide examples and case studies | Luca Deiggas

THE INFRASTRUCTURES AND CULTURAL HERITAGE AFTER THE COLLAPSE

SANCTUARY SQUARE

November 16 th , 2023 - Firenze

2003-2023 twenty years of GBInSAR natural hazard and landslide monitoring: worldwide examples and case studies | Luca Dei 22

THE INFRASTRUCTURES AND CULTURAL HERITAGE AFTER THE COLLAPSE BEHIND THE SANCTUARY

2003-2023 twenty years of GBInSAR natural hazard and landslide monitoring: worldwide examples and case studies | Luca Dei23

THE INFRASTRUCTURES AND CULTURAL HERITAGE AFTER THE COLLAPSE ROKFALL EMBANKMENT AND PLANTS

November 16 th , 2023 - Firenze

2003-2023 twenty years of GBInSAR natural hazard and landslide monitoring: worldwide examples and case studies | Luca Dei 22 24

THE INFRASTRUCTURES AND CULTURAL HERITAGE AFTER THE COLLAPSE ROAD

November 16 th , 2023 - Firenze

2003-2023 twenty years of GBInSAR natural hazard and landslide monitoring: worldwide examples and case studies | Luca Dei

ROCK MASS FAILURE

ARPA'S GEOLOGICAL MONITORING NETWORK: THE USE OF GROUND BASED INSAR

2003-2023 twenty years of GBInSAR natural hazard and landslide monitoring: worldwide examples and case studies | Luca Dei Cas 28

CONCLUSION

Efficacy of the monitoring network: the performance of the network gives us data values to identify vast movement areas and permit us to see gradual movement (0,03 mm/d) and then to monitoring movement close to any failure. It isn't effective for single rock block falls.

The collection of GBInSAR data values: the collection of data values, from the start of acceleration to the time of rock mass failure, permitted us to have all acceleration data values (0,1 mm/h 6 day from failure, 1 mm/h 40 hour from failure, 10 mm/h 3 hour from failure, 100 mm/h 15 minutes before failure).

In May 2018, monitoring was the only activity to guarantee human safety and protection of cultural heritage: with evacuation, the SS 36 route closed, removal of sacred paintings and gold sacred cups before the failure.

THANK YOU FOR YOUR ATTENTION !!

Gallivaggio landslide Bibliography

- «Gallivaggio landslide: the geological monitoring, of a rock cliff, for early warning system" Italian Journal of Geology and Environment. n.2(2018) pg.41-55; Aut: L. Dei Cas et al. DOI 10.4408/IJEGE.2018-02.0-03

-"<u>Geological monitoring networks for risk management close to large rock cliffs: the case history of Gallivaggio and Cataeggio in the italian Alps</u>" Geogr. Helv., 76, 85–101, 2021 Aut.: Luca Dei Cas, Maria Luisa Pastore, Andrea Pavan, and Nicola Petrella DOI.org/10.5194/gh-76-85-2021

-"<u>Rockfall forecasting and risk management along a major transportation corridor in the Alps through ground-based radar</u> interferometry" Landslides, April 2019 . Aut: T. Carlà, T. Nolesini, L Solari, C. Rivolta, L. Dei Cas, N Casagli DOI 10.1007/S10346-019-01190-y

-«<u>Previsione e gestione del rischio da caduta massi e progettazione degli interventi di mitigazione. Il caso della parete rocciosa di</u> <u>Gallivaggio</u>" ATTI DEL XXVII CONVEGNO NAZIONALE DI GEOTECNICA (pg. 573-580) Reggio Calabria 13-15 luglio 2022: Aut: G. Bragonzi, P. Cancelli, F. Cattaneo, L. Dei Cas, L. Tedeschi, ISBN 978-88-97517-14-6

- "<u>Reliability and Uncertainties of the Analysis of an Unstable Rock Slope Performed on RPAS Digital Outcrop Models: the Case of</u> the Gallivaggio Landslide (Western Alps, Italy)» Remote Sensing May 2020 Aut: T. Menegoni D. Giordan