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Abstract: Particular Matter (PM) data are the most used for the assessment of air quality, but it is also
useful to monitor VOC and CO. The health impact of PM increases with decreasing aerodynamic
dimensions, therefore most of the monitoring is aimed at PM10 (fraction of PM with aerodynamic
dimensions smaller than 10 µm) and PM2.5 (fraction with aerodynamic dimensions lower than
2.5 µm). Generally, anthropogenic emissions contribute mainly to PM2.5 levels, whereas natural
sources can largely affect PM10 concentrations. PM2.5/PM10 ratio can be used as a proxy of the origin
(anthropogenic vs natural) of the PM, providing a useful indication about the main sources of PM that
characterizes a specific geographical or urban setting. This paper presents the results of the analysis
of continuous measurements of PM10 and PM2.5 concentrations at eight stations of the regional air
quality monitoring network in Abruzzo (Central Italy), in the period 2017–2018. The application of
models based on machine learning technique shows that PM2.5/PM10 ratio can be used to classify
PM emissions and to know the nature of the emission source (natural and anthropogenic), under
determinate conditions, and properly taking into account the meteorological parameters.

Keywords: PM10; PM2.5; machine learning; aerosol; neural network; forecast; air pollution;
emission source

1. Introduction

The concentration of most air pollutants is influenced by weather conditions. For
example, usually pollutant concentrations decrease when meteorological parameters such
as wind speed, precipitation, and relative humidity increase, due to more efficient dilution
and dry deposition [1]. Increasing atmospheric pressure is usually positively correlated
with pollutant accumulation. High temperatures combined with higher humidity can
contribute to the increase of PM10 and PM2.5 [2]. Effective control and reduction of
air pollution requires good knowledge of the impacts of meteorological parameters on
PM10 and PM2.5 concentrations: the combination of meteorological conditions with the
dynamic of the boundary layer height results in typical diurnal and seasonal changes of
the concentrations of PM10 and PM2.5, determining higher values at night and in the
winter [3].

In the last years, different modelling approaches have been developed to analyze and
predict the evolution of PM10 and PM2.5. Some of them are based on machine learning
techniques [4–8].
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A comparison of the performance of different regression models and Artificial Neural
Networks (ANN) models based on different architectures shows that, in terms of agreement
between measured and forecasted PM10 and PM2.5, the Elman Recurrent approach gives
better results compared with ANN without recurrent approach and with multiple linear
regression model (MLR) [6,8]. ANNs combined with clustering algorithms is another
approach that has shown better forecast capacity than those based on a simple ANN or
MLR [9]. Artificial neural network (ANN) approaches are commonly used in many appli-
cations of atmospheric science [7,10–12]. In terms of PM2.5 forecast, which is usually less
frequently observed than PM10, the inclusion of PM10 in the input variables significantly
improves the results of the forecast [4]. Model results are strongly influenced by the distri-
bution of PM10 data: the use of PM10 data with uniform distribution can lead to a more
appropriate prediction at high concentrations, but the accuracy of prediction comes down
to low PM10 concentrations. To overcome this problem, two training datasets with different
distributions could be combined in two prediction models from PM10, obtaining a model
suitable for predicting low to high PM10 concentrations [13]. One more aspect of the model
architecture is the algorithm that can be linear or non-linear. Different intercomparisons of
the results of simulation of models based on different algorithms show that the non-linear
algorithm is better performing than the linear algorithm in terms of lower values error,
higher precision, and robustness [14].

Since 2017, the air quality in the Abruzzo region (central Italy) has been monitored by a
network made up of 16 fixed stations, equipped with a total of over 60 automatic analyzers
and managed by the Regional Agency for Protection of the Environment (ARTA Abruzzo,
Italy, Pescara), which also validates and publishes the data on the sira.artaabruzzo.it website
(last access on 13 December 2021).

In this work, we carried out an analysis of two years (2017–2018) of continuous
measurements of PM10 and PM2.5 and ancillary parameters in eight stations of this network.
The main goal is to explore how the PM2.5/PM10 ratio can provide information on the
origin of PM. In particular, we have analyzed daily and seasonal trends of this ratio at
different locations, together with meteorological parameters, relying on machine learning
model simulations to segregate the anthropogenic sources from those of natural PM, as
indicated in the flowchart of the study (Figure 1).
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acterized by the presence of the highest peak of the Apennines mountains range: the Gran 
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coast), and Mount Maiella (2793 m asl) which is located in the south-west (about 35 km 
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teorology of the region, which is subject to meteorological processes such as sea and 
mountain breezes and convective processes [2]. 

Figure 1. Flowchart of the study steps.

2. Methodology
2.1. Study Area

Data used in this study have been collected in Abruzzo, a region of central Italy
characterized by the presence of the highest peak of the Apennines mountains range: the
Gran Sasso massif (2912 m asl), located in the west/north-west (about 60 km from the
Adriatic coast), and Mount Maiella (2793 m asl) which is located in the south-west (about
35 km from the Adriatic coast) (Figure 2). These orographic features strongly influence the
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meteorology of the region, which is subject to meteorological processes such as sea and
mountain breezes and convective processes [2].
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summer with temperatures up to 30 °C and a mild winter, typical of the Mediterranean 
climate. PM10 and PM2.5 concentrations show the typical annual cycle with higher con-
centrations during the winter and lower concentration during the summer. The most pop-
ulous city along the Adriatic coast is Pescara (42°27′51.4″ N, 14°12′51.08″ E; located at the 
estuary of the Aterno-Pescara river) with approximately 120,000 residents and 300,000 in 
the surrounding metropolitan area. Moreover, Pescara has an international airport 
(Abruzzo airport) within the urban area and the busiest ports of the area. The monitoring 
stations, the object of this study, that simultaneously measure the concentration of PM10 
and PM2.5, are the following: Teatro D’Annunzio (TH), Via Firenze (FI), Montesilvano 

Figure 2. Air quality monitoring stations in the coastal area of Abruzzo (central Italy). List of the
names of the monitoring stations: Sacco (SA), Firenze (FI), Montesilvano (MO), Scuola Antonelli
(CH) Francavilla (FR), Amiternum (AQ), S. Gregorio (SG), Gammanara (GA), Porta Reale (PR),
Cepagatti (CE) Villa Caldari (OR), Atessa (AT), Castel di Sangro (CS), Arischia (AR), Parco N zionale
Maiella (PNM).

The coastal area of Abruzzo is characterized by high humidity all year round, warm
summer with temperatures up to 30 ◦C and a mild winter, typical of the Mediterranean
climate. PM10 and PM2.5 concentrations show the typical annual cycle with higher concen-
trations during the winter and lower concentration during the summer. The most populous
city along the Adriatic coast is Pescara (42◦27′51.4” N, 14◦12′51.08” E; located at the estu-
ary of the Aterno-Pescara river) with approximately 120,000 residents and 300,000 in the
surrounding metropolitan area. Moreover, Pescara has an international airport (Abruzzo
airport) within the urban area and the busiest ports of the area. The monitoring stations,
the object of this study, that simultaneously measure the concentration of PM10 and PM2.5,
are the following: Teatro D’Annunzio (TH), Via Firenze (FI), Montesilvano (MO), Scuola
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Antonelli (CH), Francavilla (FR), Amiternum (AQ), Villa Caldari (OR), and Castel di Sangro
(CS) (Table 1).

Table 1. Summary table of the fixed stations of the Abruzzo regional network for monitoring air
quality, with details of the measured parameters.

Area Municipality Station Name Station ID Latitude Longitude Type PM10 PM2.5

Agglomerate
Chieti-Pescara

(AGG)

Pescara T.D’annunzio TH N 4,700,733 m E 437,102 m UB X X

Pescara Via Sacco SA N 4,700,366 m E 434,150 m UB X

Pescara Via Firenze FI N 4,702,020 m E 435,376 m UT X X

Montesilvano Montesilvano MO N 4,707,801 m E 430,126 m UT X X

Chieti Scalo Scuola Antonelli CH N 4,688,783 m E 429,050 m UB X X

Francavilla al
Mare Francavilla FR N 4,697,015 m E 429,050 m UB X X

Greater
Anthropic
Pressure
(MAXP)

L’aquila Amiternum AQ N 4,691,713 m E 366,938 m UB X X

L’aquila S. Gregorio SG N 4,687,738 m E 375,604 m SB

Teramo Gammanara GA N 4,724,660 m E 395,690 m UB X

Teramo Porta Reale PR N 4,723,748 m E 394,297 m UT X

Cepagatti ASL Cepagatti CE N 460,147 m E 423,332 m RB

Ortona Villa Caldari OR N 4,682,708 m E 446,950 m SB X X

Atessa Atessa AT N 4,665,673 m E 453,840 m I X

Lower
Anthropic
Pressure
(minp)

Castel di
Sagro Castel di Sangro CS N 4,625,609 m E 425,526 m SB X X

Arischia Arischia AR N 4,697,123 m E 364,389 m RB

S. Eufemia A
Majella

Parco Nazionale
Maiella PNM N 4,663,534 m E 419,701 m RB

The monitoring stations TH, FI, MO, and FR are located along the coastline: TH and FR
are urban background stations, while FI and MO are urban traffic stations. The monitoring
stations CH and OR are located in the immediate hinterland, whereas AQ and CS are in
the Apennines hinterland: CH and AQ are urban background stations, while OR and CS
are suburban background stations (Figure 2 and Table 1).

2.2. Model Analysis

In recent years, ANNs that use multiple stages of nonlinear computation (also known
as “deep learning”) have been able to obtain outstanding performance on an array of
complex tasks ranging from visual object recognition to natural language processing.
However, it has been found in literature that most of the available tutorials on ANNs are
either dense with formal details and contain little information about implementation or any
examples, while others skip a lot of the mathematical detail and provide implementations
that seem to come from thin air. This post aims to give a more complete overview of ANNs,
including (varying degrees of) the math behind ANNs, how ANNs are implemented In
code, and finally some examples that point out the strengths and weaknesses of ANNs.

The simplest ANN takes a set of observed inputs, multiplies each of them by their
own associated weight, and sums the weighted values to form a pre-activation. Oftentimes
there is also a bias that is tied to an input that is always +1 included in the preactivation
calculation. The network then transforms the pre-activation, using a nonlinear activation
function to output a final activation.

There are many options available for the form of the activation function, and the choice
generally depends on the task we would like the network to perform.
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For instance, if the activation function is the identity function which outputs continu-
ous values, then the network implements a linear model akin to those used in standard
linear regression. Another choice for the activation function is the logistic sigmoid. When
the network outputs use the logistic sigmoid activation function, the network implements
linear binary classification. Single-layered neural networks used for classification are often
referred to as “perceptrons”, a name given to them when they were first developed in the
late 1950s.

Artificial neural networks (ANN) are based on training and learning methods, thus
creating predictive schemes, including the identification and classification of processes.
The basic architecture of an ANN includes three parts [15,16]: the input layer (containing
neurons or nodes), one or more hidden layers (where other neurons are present), and the
output layer (with the respective output neurons). Given the i-th input neurons identified
as a vector of X of N elements, in the first step there is the multiplication of each element
of the input vector X by the corresponding weight W and then added together (X ×W).
To produce the last net input, a bias b is added, which is the argument of the function of
the output term value generated for the i-th neuron. The training method consists of fine-
tuning the bias and weight values, which are randomly set until the network performance
is initialized. A hidden single-layer feedforward neural network (FNN), with MLP (Multi-
layer Perceptron) [17,18] and different numbers of input neurons and one output neuron,
was chosen for these simulations. The information in this type of network (FNN) has the
characteristic of propagating only forward through the nodes of the network itself, contrary
to recurrent neural networks in which there are feedback connections between the levels [5].

2.3. Sampling and Data Analysis

As previously outlined, PM10 and PM2.5 are detected simultaneously in eight stations
of the regional network, five of which are located in the urban agglomeration Pescara-Chieti
(AGG), two are in the area with higher anthropogenic pressure (MAXP), and one is in the
area with lower anthropogenic pressure (MINP), as shown in Table 1. As expected, the
average of the values detected in the two-year period 2017–2018 shows that the highest
concentrations are found in the AGG and in the MAXP, whereas the CS station, located
in the MINP, shows the lowest values (Figures 3 and 4). There are also evident seasonal
variations, with the spring–summer period (from April to September) characterized by
significantly lower average values. The only exception concerns the PM10 detected in the
CS station, probably due to the prevalence of the natural component. Seasonal variations
are more pronounced for PM2.5, which is more affected by the anthropogenic contribution
(Tables 2 and 3).

The average values of PM10 are all below the annual limit of 40 µg·m−3 established by
Directive 2008/50/EC of the European Parliament (Strasbourg, France) and of the Council
of 21 May 2008 (relating to ambient air quality and cleaner air in Europe), even at the
stations where the anthropogenic emissions are higher. Additionally, for PM2.5 there is
full compliance with the limit value of 25 µg·m−3, with average values around 16 µg·m−3

(denoting substantial homogeneity within the AGG, except for FR), resulting far from
those measured in 2017 in the major metropolitan cities of the Po basin (Turin: 33 µg·m−3,
Milan: 30 µg·m−3, Venice: 29 µg·m−3) and rather similar to those measured in the large
central-southern agglomerations such as Rome (17 µg·m−3), Florence (16 µg·m−3), and Bari
(15 µg m−3) [19]. The boxplots in Figures 3 and 4 synthesize the data distributions observed
in each station. It is interesting to note how the FR station, located in a peripheral area of
the AGG, shows a significantly different distribution from the other four AGG stations,
resulting in being more similar to the OR station. The other four AGG stations show
rather similar average values, with the background stations (TH and CH) characterized by
greater variability than the station more impacted by traffic emissions (FI and MO). It is
interesting to observe that in the summer semester, when the meteorological conditions
favor the dilution of pollutants in the planetary boundary layer, the average PM2.5 level
in OR is quite close to that typical of AGG stations; this homogeneity could be related
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to the spatial proximity of OR to the AGG (see Figure 2), while the remaining stations
(AQ and CS), located in the Apennine hinterland, show significantly lower values. On the
other hand, in the winter semester the differences between the various stations are much
more marked. The average annual and winter PM2.5/PM10 ratio (Figure 5) do not show
marked differences between the various stations, with values ranging between 0.60 and
0.70 and 0.67 and 0.75, respectively. On the contrary, as indicated in the summary table of
the average of daily values of the PM2.5/PM10 ratio in the eight stations of the network
in the two-year period 2017–2018 (Table 4), in summer the stations located at distances
from the sea of less than 1 km (TH, FI, MO, FR) show a PM2.5/PM10 ratio smaller than the
remaining stations, with values ranging between ~0.6 and ~0.75. In detail, the TH station,
located just 250 m from the coastline, in June–August shows a peculiar PM2.5/PM10 value
compared with other stations, probably because it is significantly affected by marine aerosol.
The MO, FI, and FR stations also suffer this influence, albeit to a lesser extent, while in the
innermost stations, including the OR (located about 7 km from the coast), the ratio remains
above 0.6 even in the summer months. The role of marine aerosol in raising PM10 levels in
summer in the stations closest to the coast is obviously connected to sea breezes (blowing
from north-east), as clearly highlighted by the wind-rose for Pescara, shown in Figure 6b. In
wintertime, on the other hand, westerly winds dominate, i.e., blowing from the hinterland
(Figure 6a). Of particular importance are the SSW and SW winds, aligned with the axis
of the Pescara river valley, typical of anticyclonic periods during which the conditions
of atmospheric stability favor thermal inversion and a general worsening of air quality.
To confirm this, a polar plot for station TH (Figure 7a,b) has been analyzed: it shows the
evident influence of SW winds when the wind speed is less than 1 m s−1, determining the
highest concentrations of PM2.5 (Figure 7a). For this urban background station, in fact, the
anthropogenic sources of pollution (road networks and industrial sites) are located in the
urban area that develops towards the south-west, in the hinterland along the Pescara valley.
On the other hand, the analogue polar plot for PM10 (Figure 8b) has significantly different
patterns compared with that of PM2.5: the SW winds loses relevance, while the role of NW
and NE winds (sea breeze) is dominant in determining high levels of the pollutant, mainly
of natural origin (primarily marine aerosol). The comparison between the polar plots of
the PM2.5/PM10 ratio at TH and CH (Figure 8a,b) confirms that the SSW-WNW winds
determine the highest values of the PM2.5/PM10 ratio (Figure 8a), causing advection of
PM2.5 of anthropogenic origin.

In Figure 8b we show the polar plot for the CH station, which highlights high
PM2.5/PM10 values related to weak wind speed from the western quadrants, where,
with respect to the measurement site, the major anthropogenic sources of pollution are
located. The scatterplot in Figure 9 compares the distribution of PM2.5 measured at TH
and CH (urban background station), both in summer and winter semesters, whereas the
same comparison in Figure 10 concerns the traffic station FI and MO. In Table 5 the values
of the Pearson coefficient ρxy are reported for all the pairs of measurements of PM2.5 for
the 5 stations belonging to the AGG plus OR, both for the summer and winter semester.
This analysis shows that urban background stations belonging to AGG (TH, CH, FR) are
all correlated each other in winter; it is also important to note that the highest correlation
value is recorded in winter between TH and FI, with the second station being a traffic
station but located only 2 km far from the first. The two traffic stations (FI-MO) show
high correlation values in both seasons, with the highest value being recorded in summer.
The OR station, as a peripheral station not belonging to the AGG, correlates with all the
others to a lesser extent. An explanation may lie in the fact that in winter the atmospheric
stability often occurs, favoring the accumulation of PM2.5 concentrations and their spatial
homogenization over large geographical areas, for which the urban background stations
tend to record values similar to traffic stations, which are located near the emission sources.
On the contrary, the weather conditions typical of summer, in which phenomena of greater
turbulence and greater height of the boundary layer occur, favor the dispersion of pollu-
tants, increasing the spatial concentration gradients and consequently reducing the degree
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of correlation between stations. On the contrary, the traffic stations show a slight increase
of the concentrations of PM, since it is near the emission source.
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Table 2. Summary statistics for PM2.5 (expressed in µg·m−3) measured in the eight stations of the
network in the two-year period 2017–2018, for summer semesters (from April to September), winter
semester (from October to March), and for the whole year.

Period Statistic TH FI MO CH FR OR AQ CS

winter sem.

mean 20.2 19.7 20.0 20.5 16.2 14.5 12.9 9.2

median 18 18 18 19 14 13 12 9

st.dev. 11.8 10.7 9.4 10.9 9.1 8.1 7.1 4.6

min 3 3 3 3 3 2 2 1

max 59 50 47 53 43 46 43 29

summer sem. mean 11.5 11.9 11.9 11.9 10.3 11.0 9.3 8.5

median 11 12 12 12 10 11 9 8

st.dev. 4.1 4.2 3.8 4.4 4.1 4.4 4.0 3.9

min 3 4 4 4 3 2 2 2

max 31 30 27 29 28 25 45 30

year mean 15.9 15.8 15.9 16.3 13.2 12.7 11.1 8.8

median 13 13 14 14 11 12 10 8

st.dev. 9.9 9.0 8.2 9.4 7.6 6.7 6.0 4.3

min 3 3 3 3 3 2 2 1

max 59 50 47 53 43 46 43 45

data av% 95.1 97.0 96.3 91.1 96.7 96.0 97.9 91.9

Table 3. Summary statistics for PM10 (expressed in µg·m−3) measured in the eight stations of the
network in the two-year period 2017–2018, for summer semester (from April to September), winter
semester (from October to March), and for the whole year.

Period Statistic TH FI MO CH FR OR AQ CS

winter sem.

mean 28.1 28.4 28.2 26.8 21.7 19.0 18.4 12.7

median 27 27 27 26 20 17 18 12

st.dev. 12.6 12.4 11.2 13.0 10.0 9.6 9.0 6.2

min 6 6 7 5 6 4 3 2

max 65 65 68 80 62 53 47 38

summer sem. mean 23.7 20.8 20.3 19.1 17.7 17.0 15.3 13.4

median 23 20 20 18 17 16 14 12

st.dev. 8.7 6.5 6.0 6.8 6.3 7.0 6.9 6.8

min 5 6 6 7 5 4 4 4

max 86 48 46 53 64 61 58 60

year mean 25.9 24.6 24.3 23.1 19.7 18.0 16.8 13.1

median 24 22 22 21 18 16.5 13 12

st.dev. 10.8 10.4 9.6 10.9 8.4 8.3 8.0 6.5

min 5 6 6 5 5 4 3 2

max 86 65 68 80 64 61 58 60

data av% 94.8 96.9 96.9 92.5 97.1 96.0 98.1 91.5
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Table 4. Summary table of the average of daily values of the PM2.5/PM10 ratio in the eight stations
of the network in the two-year period 2017–2018 average value in the summer semester, in the winter
semester, and for the whole year.

Period TH FI MO CH FR OR AQ CS

April–September 0.50 0.57 0.58 0.62 0.58 0.65 0.62 0.65
October–March 0.70 0.67 0.69 0.74 0.72 0.75 0.69 0.74

year 0.60 0.62 0.64 0.66 0.65 0.70 0.66 0.69
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Table 5. Pearson linear correlation coefficient matrix for PM2.5 (summer semester above the diagonal,
winter semester below), for the six stations of the coastal strip.

PM2.5 TH FI MO CH FR OR

TH 0.934 0.904 0.857 0.922 0.872

FI 0.953 0.954 0.902 0.926 0.902

MO 0.885 0.943 0.882 0.925 0.898

CH 0.923 0.913 0.847 0.874 0.875

FR 0.930 0.948 0.912 0.905 0.891

OR 0.851 0.893 0.847 0.883 0.914

In order to predict the PM2.5/PM10 ratio, the study continued with model analysis
using the FFN network. The FNN was implemented using python with the sklearn (scikit-
learn.org) and is schematized in Figure 11: it uses a TANH activation function in two
hidden layers and a linear one in the output layer. The FNN was run by varying the
number of neurons in the hidden layer (from 1 to 35 neurons) to find the best simulation
performance; 30 tests of the model were performed, and the FFN was ran 30 times, during
which the weights and bias were varied in turn. To make it reproducible after restarting the
machine or in a different machine, we fixed the seed. The input neurons used for model
analysis were: (1) carbon monoxide CO, (2) relative humidity (RH), (3) temperature (T),
(4) amount of rainfall (RA) (for all stations: FI, MO, OR, TH, and all simulations). The
purpose of our analysis was to simulate PM2.5 and PM10 separately in order to better
estimate the PM2.5/PM10 ratio. We have used the holdout method to verify the model
accuracy on the new dataset (i.e., validation dataset). The data was divided into three
series: training (70%), validation (15%), and testing (15%). They were selected using indices
initially generated randomly, and then kept fixed for all simulations: in this way, we fixed
the selection of the dataset for all simulations, leaving only the weights and the bias variable.
The network performance function employed in FFNs (Table 6) [5] is the mean square error
(MSE), which controls the optimization of weights and biases during the training process.
To select the best simulation among the cases generated with the approach described above,
the following statistical parameters have been used and listed in Table 6: the minimum
MSE among the target output (i.e., measured PM) and the network output (i.e., modeled
PM), the normalized minimum MSE (NMSE) i.e., the MSE divided by the variance of the
measured PM, and the maximum correlation coefficient (R) between the measured and
modelled PM [5].

Table 6. Scatter plot of modelled vs measured PM2.5/PM10 for the stations (FI, MO, OR, TH) with
CO and without CO (no CO) as input neuron. In both cases, the meteorological parameters used as
input were the same (T, RH, RA).

CO

Station R NMSE FB FA2 Slope Intercept

CS 0.45 0.04 0.02 1.03 0.58 0.30

FI 0.63 0.03 0.00 1.01 0.74 0.16

MO 0.57 0.03 0.00 1.01 0.82 0.11

OR 0.55 0.02 −0.01 0.99 0.87 0.08

TH 0.74 0.05 0.02 1.02 0.82 0.11
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Table 6. Cont.

noCO

Station R NMSE FB FA2 Slope Intercept

CS 0.36 0.04 0.02 1.03 0.60 0.28

FI 0.60 0.03 0.00 1.01 0.75 0.15

MO 0.51 0.03 0.00 1.01 0.65 0.22

OR 0.44 0.03 0.00 1.01 0.45 0.38

TH 0.70 0.06 0.00 1.03 0.81 0.11
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2.4. Lin and Pearson Coefficient

An overview analysis of the data has been carried out in order to assess the space-time
homogeneity of the PM concentrations measured at the monitoring stations, using the
Pearson correlation coefficient [20] together with the Lin concordance coefficient [21,22].
The Pearson correlation coefficient (ρxy) is a measure of the linear correlation between two
variables x and y (in this case, daily measurements of the concentration of PM10 or PM2.5
at a pair of stations), which allows to determine whether the two variables (time series of
coupled data) are in phase. The Lin coefficient (ρc) is the degree of linear agreement between
the two variables, combining precision and accuracy estimates in order to determine how
far pairs of experimental data deviate from the line of the perfect agreement [23]. The
second stage of the data analysis consisted of the development of machine learning models
aimed at predicting the concentration levels of PM10 and PM2.5 as a function of different
meteorological variables.

The Lin coefficient, calculated for some of the pairs of stations referred to in Table 5,
substantially confirms the results suggested by the Pearson coefficient, highlighting high
concordance values only for the FI-MO and TH-FI pairs (Table 7) and, limited to winter for
the pair of urban background stations TH-CH, both belonging to the AGG area but located
at the two borders of the same (TH is very close to the sea, CH is located in the Pescara valley



Atmosphere 2022, 13, 484 15 of 18

15 km from the coast). This analysis confirms that in winter there is a high homogeneity
of the spatial distribution of PM2.5 in the AGG. A further analysis was conducted by
examining the variation of the Pearson correlation coefficient for PM2.5 measured at the
two stations, TH and CH, as a function of the prevailing direction of the wind (without
distinguishing between summer and winter). The results show that the highest values
(between 0.931 and 0.944) are due to winds from the western quadrants (in particular SSW
and SW, the most prevalent directions), while the lower values (between 0.81 and 0.87)
occur when the wind blows from the eastern quadrants (NNE to ESE). It should be noted
that the SW-SSW winds are directed along the axis of the Pescara valley (in which the
main sources of anthropogenic emission of particulate matter are located), from the inside
towards the coast, while the winds from the eastern quadrants carry air of marine origin,
poor in particulate matter of anthropogenic origin.

Table 7. Lin’s coefficient for PM2.5, calculated for some pairs of stations, for both semesters.

PM2.5 FI-MO MO-FR FI-TH FI-FR TH-FR TH-MO TH-CH CH-OR TH-OR

April–September 0.951 0.857 0.930 0.862 0.884 0.899 0.851 0.855 0.863

October–March 0.934 0.841 0.947 0.879 0.836 0.861 0.919 0.708 0.685

3. Results and Discussion

In this work we analyzed the data of PM10 and PM2.5, measured in the two-year
period 2017–2018, in eight stations of the network, of which five were in the Pescara-
Chieti AGG, two were, in the MAXP, and one was in the MINP. As expected, the highest
concentrations are found in the AGG. There are also evident seasonal variations, more
accentuated for PM2.5, which is more affected by the anthropogenic contribution. The
average values of PM10 and PM2.5 are all below the annual limits established by Directive
2008/50/EC of the European Parliament and of the Council of 21 May 2008 (relating to
ambient air quality and cleaner air in Europe) (of 40 µg m−3 and 25 µg m−3, respectively),
and also for the stations of the AGG characterized by a substantial spatial homogeneity of
pollution levels.

In this analysis, we used a FFN network to predict the PM2.5/PM10 ratio by using
as model input the meteorological parameters that may impact the PM evolution: RH, T,
and RA. WS and WD were not used as input parameters in the final simulation because
their data showed several gaps in almost all the stations. Therefore, in the model setup, the
inclusion of WS and WD significantly reduced the possibility of training and validation
of the model. On the other hand, to figure out the role of the ratio of PM2.5/PM10 on the
identification of the origin of the PM, FFN network model simulations were carried out
in two configurations, including as input the concentrations of CO in the first simulations
and excluding CO. In both configurations the meteorological parameters were kept fixed
as input. Table 6 and Figure 12 also summarize the results of the model simulations for the
station where enough data of CO and meteorological data were available. Comparing the
model results for the stations dominated by biogenic emissions (TH and CS), looking at
the slope and intercept of observed vs modelled PM2.5/PM10 ratio, the inclusion of CO
as input for the model has no effect on the performance of the simulation. Since CO is a
good proxy of anthropogenic emission [6] what we found in terms of simulations with
and without CO as input means that in sites where biogenic emissions dominate the PM
fraction, the PM2.5/PM10 ratio is a good proxy of the PM origin. On the other hand, in sites
where the anthropogenic emissions dominate the PM fraction (MO and OR), the inclusion
of CO as input in the model results in an improvement of all the statistical parameters
such as slope and intercept (Table 6 and Figure 12). These results are further proof that the
PM2.5/PM10 ratio can be used as a proxy to classify the PM origin. On the contrary, the FI
station that is in an urban area, where we expect anthropogenic emissions to dominate the
PM fraction, shows a behavior not consistent with the analysis above, since the inclusion
of CO seems to not affect the performance of the model. This result could be explained
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considering that FI station is an urban canyon where mixing and evolution of PM, CO, and
meteorological parameters are rather complicated and sometimes biased by single local
point emission.
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4. Conclusions

The analysis of the spatial correlation indices between the various stations, within
the AGG, confirms a significant spatial homogeneity of the PM concentrations in the
winter semester, for which the urban background stations tend to record similar values
to those located near the emission sources, for example traffic (the spatial concentration
gradients are reduced). On the contrary, the meteorological conditions typical of the
summer semester favor the mixing of the boundary layer and the dispersion of pollutants,
restoring the spatial concentration gradients and consequently reducing the degree of
correlation between stations.

The average values of the PM2.5/M10 ratio provide useful information to understand
the possible sources of emissions. In fact, they show marked differences between the
various stations in summer, due to the significant contribution of biogenic emission (mainly
marine aerosol) affecting the stations located near the coastline. In particular, the TH
station, located just 250 m from the coastline, shows a lower PM2.5/PM10 value (R < 5)
in June–August compared with other stations (Figure 5). This phenomenon is confirmed
both by the trend of the concentrations of PM 2.5 and PM10 in relation to the direction and
speed of the wind (as clearly highlighted by the Polar plots, shown in Figure 7a,b) and by
the analysis of the model using the network FFN, which showed that the PM2.5/PM10
ratio can be a good tool for analyzing the origin of PM. In detail, the simulations using RA
as proxy of the origin of the PM gave, at least for the measurements and the sites analyzed
in this work, proof that the PM2.5/PM10 ratio has a completely different behavior in
sites dominated by biogenic emissions compared with those dominated by anthropogenic
one. This result demonstrates that the analysis of the PM2.5/PM10 ratio, with the help
of model analysis using the FFN network, is an excellent tool to know the nature of the
emission source (natural and anthropogenic). Further studies are needed to confirm these
results, such as simultaneous measurements of the PM2.5/PM10 ratio and the chemical
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composition of PM by means of Aerosol Mass Spectrometer (AMS) or Scanning Electronic
Microscopy (SEM).
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