Roma – 11 Febbraio 2020

Estensione dell'analisi di rischio sanitario ambientale a contaminazioni di nanomaterali in sistemi acquiferi

Carlo Bianco, Tiziana Tosco, Rajandrea Sethi

POLITECNICO DI TORINO Groundwater

ANALISI DI RISCHIO DEI SITI CONTAMINATI Opportunità e Prospettive a 10 anni dai "Criteri Metodologici"

Engineering

NP di origine naturale

NP di origine antropica

- Valutazione dei potenziali rischi associati a rilasci di nanoparticelle (NP):
 - Sorgenti diffuse
 - □ Stimare le concentrazioni attese di NP nei diversi comparti ambientali
 → basse concentrazioni
 - Sorgenti puntuali (discariche, siti industriali)
 - Scala locale
 - Concentrazioni potenzialmente elevate
 - Potenziali effetti cronici sulla
 - salute umana
 - Pochi studi, assenza di
 - procedure standard

- Valutazione dei potenziali rischi associati a rilasci di nanoparticelle (NP):
 - Sorgenti diffuse
 - □ Stimare le concentrazioni attese di NP nei diversi comparti ambientali
 → basse concentrazioni

- Sorgenti puntuali (discariche, siti industriali)
 - Scala locale
 - Concentrazioni potenzialmente elevate
 - Potenziali effetti cronici sulla
 - salute umana
 - Pochi studi, assenza di
 - procedure standard

Analisi di rischio per siti contaminati

- Riferimento: Procedura ASTM
 - Sviluppata per composti chimici (no NP)
 - Risultati: rischio per la salute umana in termini di HQ e ILCR

- □ Approccio su 3 livelli, 3 step:
 - Identificazione dei percorsi di migrazione
 - Simulazione del trasporto dei contaminanti → modelli di trasporto (analitici, numerici) → C al POE, mappe di concentrazione
 - Stima dell'impatto sui recettori potenziali → parametri di tossicità/cancerogenicità (Chronic Reference Dose, Slope Factor) → rischio al POE, mappe di rischio

Analisi di rischio per siti contaminati

Riferimento: Procedura ASTM

Soluti

Concentrazione in massa

Trasporto

$$NAF = \frac{S_{soil}}{C_{POE}} = K_{sw} \cdot LDF \cdot DAF$$
$$HQ = \frac{C_{POE} \cdot E}{C_{POE} \cdot E}$$

Rischio tossico

Rischio cancerogeno

RfD

Riferimento: Procedura ASTM

Dimensione NP

Riferimento: Procedura ASTM

Riferimento: Procedura ASTM

Meccanismi di migrazione delle NP sono diversi da quelli dei soluti

NP sistema complesso

Riferimento: Procedura ASTM

Soluti Mobilità Tossicità Concentrazione in massa Frequenza $NAF = f(d_p)$ Trasporto $HQ = f(d_p)$ Rischio tossico $ILCR = f(d_p)$ *Rischio cancerogeno* La tossicità non dipende soltanto dalla Ag **Dimensione NP** composizione chimica della particella, ma anche dalla sua dimensione Ag Ag ANALISI DI RISCHIO DEI SITI CONTAMINATI Opportunità e Prospettive a 10 anni dai "Criteri Metodologici"

Analisi di rischio per siti contaminati da NP

- Procedura ASTM modificata per NPs
 - Distribuzione granulometrica
 - Suddivisione in classi
 - Concentrazioni in numero
 - Trasporto e tossicità \rightarrow f(d_p)

Tosco, Sethi (2018) Human health risk assessment for aquifer systems at nanoparticle-contaminated sites

Analisi di rischio per siti contaminati da NP

- Procedura ASTM modificata per NPs
 - Distribuzione granulometrica
 - Suddivisione in classi
 - Concentrazioni in numero
 - Trasporto e tossicità $\rightarrow f(d_p)$
 - Rischio totale Σ (classi)

$$\mathsf{VAF}_{i} = \frac{S_{soil,i}}{C_{POE,i}} = K_{sw,i} \cdot LDF_{i} \cdot DAF_{i}$$

Rischio tossico

Trasporto

$$HQ = \sum_{i} \left(\frac{C_{POE,i}}{RfD_{i}} \right) \cdot E = \sum_{i} \left(\frac{m_{i} \cdot N_{w,POE,i}}{RfD_{i}} \right) \cdot E$$

Rischio cancerogeno

$$ILCR = \sum_{i} (C_{POE,i} \cdot SF_{i}) \cdot E =$$
$$= \sum_{i} (m_{i} \cdot N_{w,POE,i} \cdot SF_{i}) \cdot E$$

Tosco, Sethi (2018) Human health risk assessment for aquifer systems at nanoparticle-contaminated sites

Strumenti per AdR-NP: Trasporto

<u>M</u>icro- and <u>N</u>ano-particles transport, filtration and clogging <u>M</u>odel – <u>S</u>uite

$$\begin{cases} \frac{\partial}{\partial t} (\varepsilon_m c) + \frac{\partial (\rho_b s)}{\partial t} + \frac{\partial}{\partial x} (q_m c) - \frac{\partial}{\partial x} \left(\varepsilon_m D \frac{\partial c}{\partial x} \right) = 0\\ \frac{\partial (\rho_b s)}{\partial t} \underbrace{f(c, s, c_{ca})} \end{cases}$$

- Simulazione cinetiche di deposizione e rilascio NP
- Possibilità di includere parametri di trasporto "size-dependent"

https://areeweb.polito.it/ricerca/groundwater/software

ANALISI DI RISCHIO DEI SITI CONTAMINATI Opportunità e Prospettive a 10 anni dai "Criteri Metodologici"

MNMs 2018 v. 3.013 (03-12-2019) (397 download)

MNMs 2018 v. 3.007 (02-03-2018) 64 bit (147 download) MNMs 2018 v. 3.005 (25-01-2018) 64 bit (266 download) MNMs 2018 v. 3.002 (26-10-2017) 64 bit (122 download)

Strumenti per AdR-NP: tossicità

- Tossicità delle NP:
 - Dipendente da fattori sia biologici che fisici
 - La dimensione parametro fondamentale
- Parametri di tossicità
 "size-dependent"
 - Pochi studi in letteratura
 - Ad oggi non disponibili parametri ufficiali, seppur fondamentali
 - Necessari studi ecotossicologici per determinare SF e RfD

Marano F., Rodrigues-Lima F., Dupret JM., Baeza-Squiban A., Boland S. (2016) Cellular Mechanisms of Nanoparticle Toxicity.

Modif. from: Asghari, Johariet al. (2012). Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. Journal of Nanobiotechnology, 10(1), pp. 14.

Analisi di rischio per siti contaminati da NP

From: Tosco, Sethi (2018) Human health risk assessment for aquifer systems at nanoparticlecontaminated sites

- NP di argento
 - Prove di trasporto in colonna:

- □ 2 dimensioni: **10 nm**, **65 nm**
- Sabbia silicea, L=11.5 cm
- □ q=9.1·10⁻⁵ m/s, C=10 mg/l

10 nm

- 65 nm 🗆 Conc. NaCl: 10, 30, 50 mM
- Rilascio da discarica:
 - Rilascio di nanoparticelle di Ag:

 15 mg/l D_{10nm}, RfD=2.3·10⁻² mg/kg/d
 15 mg/l D_{65nm}, RfD=3.6·10⁻² mg/kg/d
 7.5 mg/l D_{10nm} + 7.5 mg/l D_{65nm}

Bianco, Tosco, Mondino, Sethi (in preparation)

Opportunità e Prospettive a 10 anni dai "Criteri Metodologici"

Conclusioni

- Per implementare una procedura di analisi di rischio per siti contaminati da nanomateriali è necessario includere caratteristiche specifiche delle NP
 - Necessario adattare/estendere i modelli esistenti → procedura ASTM per analisi di rischio RBCA (soluti)
- □ Aspetti chiave:
 - I meccanismi di trasporto delle NP sono "size-dependent" e diversi da quelli dei soluti
- ti 📆o
- assunzioni/sempificazioni per poter applicare i modelli esistenti o modelli numerici ad hoc
- La tossicità dipende dalla dimensione delle NP
 - Parametri di tossicità (RfD, SF) ad oggi sostanzialmente non disponibili

Contatti

Carlo Bianco, Tiziana Tosco, Rajandrea Sethi

Groundwater Enigneering Group Politecnico di Torino – Dipartimento di Ingegneria per l'Ambiente, il Territorio e le Infrastrutture (DIATI)

□ Email: <u>carlo.bianco@polito.it</u>

□ Tel: +39 011 0907611

□ Sito web: <u>https://www.polito.it/groundwater</u>

POLITECNICO DI TORINO

> Groundwater Engineering

ESPRA ISPRA Material And Antional Antio

Backup slides

Adattamento procedura ASTM per le NP Trasporto in falda

Adattamento procedura ASTM per le NP Trasporto in falda

Deposizione e rilascio di particelle

$$\begin{cases} \frac{\partial}{\partial t} \left(\varepsilon N_{w,i} \right) + \frac{\partial}{\partial t} \left[(1 - \varepsilon) N_{s,i} \right] + \nabla \cdot \left(u N_{w,i} \right) - \nabla \cdot \left(\varepsilon D \nabla N_{w,i} \right) = 0 \\ \frac{\partial}{\partial t} \left[(1 - \varepsilon) N_{s,i} \right] = \varepsilon k_{a,i} \psi_i N_{w,i} - k_{d,i} (1 - \varepsilon) N_{s,i} \end{cases}$$

Assunzioni:

- Ogni classe di NP è trasportata in modo indipendente
- Le interazioni delle NP con il mezzo poroso (attachment/ detachment cinetico) possono essere approssimate con meccanismi caratteristici dei soluti

 $\frac{\partial}{\partial t} (\varepsilon RC) + \nabla \cdot (uC) - \nabla \cdot (\varepsilon D\nabla C) + \varepsilon \lambda C = 0$

Implementazione nei tool di trasporto 3D della procedura standard

Trasporto di NP approssimato con soluzioni analitiche (Livello 2)

NP di argento

- □ 2 dimensioni: 10 nm, 65 nm
- Sabbia silicea, L=11.5 cm
- □ q=9.1·10⁻⁵ m/s, C=10 mg/l

10 nm 65 nm

🗖 🗆 Conc. NaCl: 10, 30, 50 mM

to in colonna: 10 nm, 65 nm , L=11.5 cm /s, C=10 mg/l 0, 30, 50 mM

Peristaltic pump

Bianco, Tosco, Mondino, Sethi (in preparation)

Sonicating bath

ANALISI DI RISCHIO DEI SITI CONTAMINATI Opportunità e Prospettive a 10 anni dai "Criteri Metodologici"

column

10

- NP di argento
 - Prove di trasporto in colonna:

- 2 dimensioni: 10 nm, 65 nm \square
- Sabbia silicea, L=11.5 cm
- \Box q=9.1·10⁻⁵ m/s, C=10 mg/l

10 nm

□ Conc. NaCl: 10, 30, 50 mM 65 nm D = 10 nm • 10 mM • 10 mM D = 65 nm• 30 mM 30 mM 0.8 0.8 • 50 mM • 50 mM 0.6 ວິ ວິ_{0.4} 0.6 2 0 0.4 **I.S**. I.S. 0.2 0.2 0 🝒 10 0 2 3 5 6 8 6 8 Ο 2 3 Δ 5 9 Pore volume (-)

Pore volume (-)

NP di argento

Prove di trasporto in colonna:

- □ 2 dimensioni: 10 nm, 65 nm
- Sabbia silicea, L=11.5 cm
- □ q=9.1·10⁻⁵ m/s, C=10 mg/l

□ Conc. NaCl: 10, 30, 50 mM

10 nm 65 nm

- Fitting con MNMs 2015
 - Blocking irreversibile
 - →Approssimato con
 - adsorbimento lineare
 - □ Attachment lineare irr.
 - →Approssimato con
 - degradazione 1° ordine

Parameter	10 nm	65 nm
Site 1		
Attachment rate k_{a1} (s ⁻¹)	$4.96 \cdot 10^{-8}$	$2.16 \cdot 10^{-7}$
Degradation rate $\lambda = \varepsilon \cdot k_{a1} (s^{-1})$	9.92·10 ⁻⁹	$4.25 \cdot 10^{-8}$
Site 2		
Attachment rate k_{a2} (s ⁻¹)	$5.79 \cdot 10^{-4}$	$1.21 \cdot 10^{-3}$
Maximum dep. conc. s _{max2} (-)	$1.61 \cdot 10^{-6}$	$5.00 \cdot 10^{-5}$
Retardation coeff. (-)	n.d.	n.d.

Bianco, Tosco, Mondino, Sethi (in preparation)

Rilascio da discarica:

Rilascio di nanoparticelle di Ag:

- □ 15 mg/l D_{10nm}, RfD= $2.3 \cdot 10^{-2}$ mg/kg/d
- \Box 15 mg/l D_{65nm} , RfD=3.6·10⁻² mg/kg/d
- \Box 7.5 mg/l D_{10nm} + 7.5 mg/l D_{65nm}

- Rilascio da discarica, livello 3:
 - Simulazione trasporto con MNM3D:
 - Equazione non approssimata per NP
 - Soluzione numerica, livello 3
 - Trasporto dipendente dalla dimensione delle NP

800 1000 1200

x (m)

